A Banach-Stone theorem for Riesz isomorphisms of Banach lattices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Banach-stone Theorem for Riesz Isomorphisms of Banach Lattices

Let X and Y be compact Hausdorff spaces, and E, F be Banach lattices. Let C(X,E) denote the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. We prove that if there exists a Riesz isomorphism Φ : C(X,E) → C(Y, F ) such that Φf is non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomorphic to Y , and E is Riesz i...

متن کامل

A multiplicative Banach-Stone theorem

The Banach-Stone theorem states that any surjective, linear mapping T between spaces of continuous functions that satisfies ‖T (f)− T (g)‖ = ‖f − g‖, where ‖ · ‖ denotes the uniform norm, is a weighted composition operator. We study a multiplicative analogue, and demonstrate that a surjective mapping T , not necessarily linear, between algebras of continuous functions with ‖T (f)T (g)‖ = ‖fg‖ m...

متن کامل

On a Question on Banach–stone Theorem

In this paper we use the standard terminology and notations of the Riesz spaces theory (see [2]). The Banach lattice of the continuous functions from a compact Hausdorff space into a Banach lattice E is denoted by C(K,E). If E = R then we write C(K) instead of C(K,E). 1 stands for the unit function in C(K). One version of the Banach–Stone theorem states that: Theorem 1. Let X and Y be compact H...

متن کامل

A noncommutative version of the Banach-Stone theorem (II).

A noncommutative version of the Banach-Stone theorem (II). Abstract In this paper, we extend the Banach-Stone theorem to the non commutative case, i.e, we give a partial answere to the question 2.1 of [13], and we prove that the structure of the postliminal C *-algebras A determines the topology of its primitive ideals space.

متن کامل

A New Proof of the Noncommutative Banach-stone Theorem

Surjective isometries between unital C*-algebras were classified in 1951 by Kadison [K]. In 1972 Paterson and Sinclair [PS] handled the nonunital case by assuming Kadison’s theorem and supplying some supplementary lemmas. Here we combine an observation of Paterson and Sinclair with variations on the methods of Yeadon [Y] and the author [S1], producing a fundamentally new proof of the structure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2008

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-08-09582-8